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Cofacialz-stacked arrangements of chromophores are found in
many biologically important molecules such as DNA and the
primary electron donor within photosynthetic reaction center
proteins. In the latter case, it has been proposed that symmetry
breaking within the photoexcited singlet state of the special pair
dimer results in significant intradimer charge-transfer chardcter.
However, photoexcitation of arene dimers constrained to a cofacial
orientation usually leads to excimer formatiom related confor-
mationally flexible dianthrylethanes, symmetry breaking in the
lowest excited singlet state produces ion pairs only in highly polar
solvents, while excimer formation still dominates at low polafity.
Perhaps the most widely studied case of solvent-induced excited-
state symmetry breaking in polar media is that of ®j@nthryl, in
which two anthracenes are bound in an edge-to-edge geometry with
their & systems perpendicular to one another in the ground %tate.

Recent evidence indicates that geometry changes following excita-y, o 1< at 632 and 677 nm, ali-5PDL,
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Figure 1. Ground-state absorption spectra for 5PBl { —), cof5PDL,
(=), andlin-5PDk (+++*) in toluene.

has a single band at

tion of 9,9-bianthryl increase the electronic coupling between the 704 nm. The zero-order molecular exciton mdtigredicts that

two anthracenes leading to the formation of a significant dipole
moment even in low polarity solventddowever, charge separation
between identical chromophores inmastacked configuration in

dipole—dipole coupling of the transition moments of the monomers
will produce two electronic transitions upon dimer formation. For
the parallel, stacked geometry, this model predicts that the higher-

low polarity media has not been reported. In an effort to develop energy transition will have all of the oscillator strength. Extension

more robust biomimetic electron doneacceptor systems, we have
synthesized 1,7-bis(pyrrolidin-¥l)perylene-3,4:9,10-bis(dicarbox-
imide) (5PDI)1° a green chromophore having properties that are
remarkably similar to those of chlorophydl'! Here we present
data showing that a symmetric cofacial 5PDI dimer undergoes
symmetry breaking following photoexcitation yielding complete
charge separation between the two halves of the dimer in the
relatively low polarity solvent toluene.

The cofacial dimercof5PDk, was synthesized by reacting both
amines of 2,7-dtert-butyl-9,9-dimethyl-4,5-xanthene-diamirie
with N-cyclohexyl-1,7-bis(pyrrolidin-1yl)-perylene-3,4-imide-9,-
10-anhydridé! Steric hindrance between the pyrrolidine rings
produces a preference for the isomer shown in the drawirngf
5PDL, which was isolated chromatographically and was used in
this study. For comparison, a linear dimigr;5PDb, with a ground-
state structure similar to that of &Bianthryl, was synthesized using
established procedurésThe energy-minimized ground-state ge-
ometry ofcof-5PDb, calculated using AM23 places the two 5PDI
chromophores in a nearly cofacial geometry with an average 3.7
A interplanar distance. The AM1 structurelioi-5PDL has a center-
to-center distance between the two 5PDI chromophores of 12.7 A
with a dihedral angle of 84between the average planes of the
chromophores.

The ground-state absorption spectra of 5RDE5PDL, andlin-
5PDL in toluene are shown in Figure 1. The lowest energy
absorption band of 5PDI occurs at 686 nm, wtdtg-5PDl, has
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of this model to include vibronic coupling in the exciton states of
the dimer relieves the symmetry restrictions inherent to the simple

model!>16Thus, most likely the 632 nm band is the transition from

the ground state to the = 0 vibronic level of the upper exciton
state, while the 677 nm band is the corresponding transition to the

v = 1 vibronic level of the lower exciton state. The greater oscillator
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that 5PDi"—5PDI~ within cof5PDI, should have a ground-state
bleaching between 610 and 710 nm, a broad positive absorption
band between 475 and 610 nm corresponding to the absorption of
both 5PDI" and 5PDt, and a sharper positive feature at 78D0

nm caused mostly from 5PD] which exhibits an absorption
maximum at 840 nm. The similarity between the spectrum of
5PDI*—5PDI- determined using spectroelectrochemistry and the
transient absorption spectrum adf5PDL, strongly indicates that
intradimer photoinduced electron transfer occurs between the 5PDI
chromophores ircof-5PDL, in both toluene and MTHF. A com-
parison of the formation times for the ion pair in toluene and MTHF
relative to the respective nanosecond excited-state decay times of

5PDI in these solvents shows that ion pair formatiocd5PDL,
Figure 2. Transient absorption spectra of 5PBi (- —), cof-5PDL, (—), is quantitative.

and lin-5PDh(++++) in toluene following excitation with a 400 nm, 80 fs . . . .
laser pulse. Inset: The simulated transient absorption spectrum of 5PDI The transient absorption spectrumlioi-SPDL in toluene does

5PDI- based on spectroelectrochemistry. not show significant absorption at 72800 nm, Figure 2.
Moreover, the excited-state dynamicsliof-5PDl, in toluene are
similar to those of 5PDI with a decay time of= 3.3 ns. These
observations show that photoexcitatiorlinf5PDL in toluene does
not produce 5PDI—5PDI . In contrast, the transient absorption
spectrum oflin-5PDL, in MTHF displays the 725800 nm band
(not shown) because of 5PD+5PDI-, which appears with =
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strength of the 632 nm transition tof-5PDl, is consistent with

the geometry of the dimer enforced by the xanthene spacer. The
same model predicts that positioning two transition dipoles in an
end-to-end fashion as they ardim-5PDL will result in a dominant

transition to the lower energy exciton state, as is observed in Figure - - .
9y 9 55 ps and decays with = 99 ps. It is likely that solvent dipole

1. However, the 1# distance dependence of the exciton interaction fluctuati in the hiah larity solvent lead t irv breaki
results in a much weaker coupling between the 5PDI chromophores. uctuations in the higher polanty solventiead to symmelry breaking

in lin-5PDL, relative to that ofco5PDL because of the larger ![n thﬁ etx_cnes stateddIn-Sgg_lz p:ﬁdlljflsng 5PDt—SPDI, similar
5PDI-5PDI distance irin-5PDb. 0 what 1S observed for J;sianthryl.

Detailed ultrafast transient absorption studies of 5PDI in toluene Our results suggest that excited-state symmetry breaking in SPDI

and 2-methyltetrahydrofuran (MTHF) have been reported previ- dimers provides new routes to biomimeti(_: charge separation a_lr_xd
ously!! For comparison, the transient spectrum of 5PDI in toluene storage assemblies that can be more easily prepared and modified
at 100 ps following a 400 nm, 80 fs laser flash is given in Figure than those based on multiple tetrapyrrole macrocycles.
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